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ABSTRACT

Virtual objects in a web-based environment can be interfaced to and controlled by external real world controllers.  A Virtual
Reality Modeling Language (VRML) inspection cell was created that models a real-time inspection system.  The tested
consists of a Cordax Coordinate Measuring Machine (CMM), a vision system for determining the part position and
orientation, and an open architecture controller.  Because of the open architecture, data such as the probe position and the part
position and orientation, can be obtained from the controller to drive a VRML model of the system.  The VRML CMM is
driven using a socket connection between the collaborator’s web browser and the real world controller.  The current probe
position, which is stored in a world model buffer in the controller, is collected by a Java applet running on the web page.  The
applet updates the VRML model of the CMM via the External Authoring Interface (EAI) of the VRML plug-in. The part
position and orientation is obtained from the vision system and the part is updated in the VRML model to represent the part’s
real world position and orientation.  The remote access web site also contains a client-controlled pan/tilt/zoom camera, which
sends video to the client allowing them to monitor a remote inspection with a PC and an Internet connection.

 Keywords:  online monitoring; open architecture control; remote access and inspection; VRML

1. INTRODUCTION

The Intelligent Systems Division maintains an inspection testbed consisting of a Cordax Coordinate Measuring Machine
(CMM), advanced sensors, and the National Institute of Standards and Technology (NIST) Real-Time Control System (RCS)
open architecture controller.  The goals of this work are, in part, to implement and test open architecture concepts in a
metrology system, to develop and demonstrate feature-based inspection, and to develop and implement a fixtureless
inspection subsystem.  The specific goal of the NGIS project, which contributed substantually to this testbed, is to increase
the speed and flexibilty of data acquisition using CMMs while still maintaining today’s accuracy.  The NGIS project involves
a consortium of companies organized by the National Center for Manufacturing Sciences.

A Virtual Reality Modeling Language (VRML) inspection cell was created that models the real-time inspection system.  The
inspection system consists of the Cordax CMM, an inspection probe, a vision system for determining the part position and
orientation, and an open architecture controller.1.  The contact probe and the vision system camera are mounted on the CMM
arm.  The controller sends velocity commands to each of the three axis motors every 5 ms and it reads each of the three axis
positions every 2 ms.  Figure 1 on the next page shows the CMM arm, the part to be inspected, the camera mounted on the
arm, and the contact probe.  The controller performs real-time processing of sensor data for feedback control of the inspection
probe.   The open architecture controller permits access to data, such as the probe position and the part position and
orientation, to drive a VRML model of the system.

In order to inspect a part, the operator specifies the features that need to be measured.  An inspection plan is automatically
generated from the computer aided design (CAD) solid model of the part.  The inspection plan is then translated into
Dimensional Measurement Interface Standard (DMIS) code.  An interpreter converts the DMIS code into conanical control
commands for the CMM and vision subsystems.2.  The CMM is then commanded to move to a predefined position and the
part to be measured is placed on the CMM table in an arbitrary position and orientation.  The operator signals that the part is
on the table and the system determines the position and orientation (i.e. pose) of the part using the camera and computer
vision algorithms.  The inspection plan is then executed.
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Figure 1.  The Inspection System

2. REMOTE ACCESS PAGE

Figure 2 shows the web-based remote access web site that was developed.  The page contains a VRML model of the
inspection cell that is controlled by the real world controller located at NIST and a collaborator-controlled pan/tilt/zoom
camera that sends video to the collaborator.  This remote access web site allows a collaborator to monitor a remote inspection
operation with a PC and an Internet connection.

Figure 2. Remote access page with the client controllable pan/tilt/zoom camera and controller driven
VRML model of the inspection cell.



2.1 VRML model of the inspection system

The CMM was originally modeled using a robotic simulation package from Deneb Robotics called TeleGRIP.   This
simulation package allows for design, evaluation, and off-line programming of robotic workcells, incorporating real world
robotic and peripheral equipment, motion attributes, kinematics, dynamics and I/O logic.

In order to view the 3D model of the CMM within a web browser, the model must first be translated to VRML.  A translator
program was written by Qiming Wang and Sandy Ressler of the Information Technlogy Laboratory (ITL) at NIST which can
be used to translate  devices and workcells generated by TeleGRIP to VRML.3. The translation includes the geometry
information as well as the kinematic information of the device.  Figure 3 shows the translated VRML model viewed within a
web browser using a VRML plug-in such as Cosmoplayer or Blaxxun Contact.

The real world inspection controller drives the VRML CMM.  This is accomplished by a socket connection between the
collaborator’s web browser and the real world controller.  When a client visits the remote access web page (Figure 2), a
VRML model of the inspection cell is downloaded to his or her machine.  Once the VRML model of the inspection cell has
been downloaded to the client’s machine, only the current joint positions need to be sent across the socket from the controller
(server) to the web browser (client) to move the joints of the VRML CMM model to the current controller position.  All of
the graphics are handled on the client machine.

Figure 3.  VRML model of the inspection system including the part to be measured



2.2  Pan/Tilt/Zoom remote camera system

The remote access web site also contains a client-controlled pan/tilt/zoom camera which sends video to the client.  This
allows a client to monitor a remote inspection with a PC and an internet connection. The video within the remote access page
is a server-pushed JPEG image with an imagemap overlaid on it.  The resolution of each image is 320 x 240 pixels.  Each
image is fairly large (20 Kbytes), therefore, frame rates are slow (1 frame per second). Each image of the video has an
overlaid imagemap, allowing the collaborator to click on the image where the new center of interest should be.  The required
pan/tilt angles are calculated and the camera moves to recenter the image.  The zoom of the camera is controlled by a scroll
bar with WIDE (zoom out) and TELE (zoom in) at the ends of the scrollbar.

3. VISION SYSTEM

Before a part can be inspected, the vision system must determine the part’s position and orientation, and then calculate the
coordinate transformation between the part coordinate system and the machine coordinate system.  The vision system
automates this process during setup using monocular vision for parts with 2D features.  The automated setup algorithm
consists of an image processing algorithm and a pose estimation algorithm.  The image processing algorithm, called Lola,4.

produces line segment features and constant curvature arc features.  The pose estimation algorithm matches sensed with
model features and performs pose clustering and pose verification.  The pose estimation is shown in Figure 4. The black
features are the sensed features and the gray features are model features translated and rotated by the computed pose estimate.
Note that a correct match is made in spite of warped, occluded, and spurious sensed features.

Figure 4. Part pose estimation

The matching segment relates the problem of finding a correspondence between sensed and model features to that of finding
a word in a dictionary.  A dictionary of words is formed where the letters consist of translation and rotation invariant
geometric attributes of all possible sets of k model features.  Each word in the dictionary is sorted by canonical order of the
letters within the word and the entire dictionary is sorted according to the canonical order of the words.  At run-time, k < s
sensed features are randomly selected from s sensed features.  The sensed word is formed and all matches between sensed
and model words are found. The part position and orientation is obtained from the vision system and updated in the VRML
model to represent the part’s real world position and orientation.



4. CONTROLLING THE VRML MODEL

The controller driven VRML model of the inspection cell augments the capabilities of the camera system by giving
collaborators a 3D perspective of cell motions and events with faster update rates.  The VRML robot is interfaced to and
controlled by the real world robot controller.  This is accomplished by a Neutral Messaging Language (NML)5. socket
connection between the collaborator’s web browser and the real world controller.  This socket is created by a Java applet
running on the remote access page.  The current joint angles of the robot, which are stored in a world model buffer in the
controller, are collected by the Java applet.  In general, the communications between an NML client and server are fairly
simple. The server starts, opens a configuration file,6.  reads whether to use Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) and a port number, and then binds to the port and listens for requests. Then a client starts and reads
the same configuration file (which tells the port whether to use TCP or UDP, and on which host the server is running),
connects to the appropriate port, and sends requests to the server. The client can send requests to write a message, read a
message only one-time, or read a message and automatically be sent updates whenever the data changes or at a particular
rate.

4.1 TCP proxy

There are several obstacles to running controller driven VRML animations within a web page.  Web browsers usually prevent
Java applets running inside them from connecting to any hosts other than the web server from which they were loaded. Many
institutions also have a firewall in place that prevents any host outside the wall from directly contacting hosts inside the wall.
One way to circumvent these problems is to run a TCP proxy.  A TCP proxy is a generic program to forward TCP data from
one host to another to provide a very limited bypass of these security restrictions.

The TCP proxy is started on the web server with command line arguments indicating the host with the NML server and the
TCP port number. It binds that port on the web server and listens for connections. Each time a client connects to the TCP
proxy, the TCP proxy connects to the NML server on the controller. It forwards any requests made by that client to the server
and any data sent by the server back to the client in such a way that neither the client nor the server is aware that a TCP proxy
is involved at all.

4.2 Low bandwidth connection

When a collaborator visits the web page, a VRML model of the inspection cell is downloaded to his or her machine.  Once
the VRML model has been downloaded to the client’s machine, only the joint positions need to be sent across the socket
from the controller (server) to the web browser (client) to move the joints of the VRML robot to the current controller
position.  All the graphics of redrawing the robot position are handled on the client machine.  The data that is sent across the
socket consists of 3 floats (x, y, and z position of the CMM probe) converted to the eXternal Data Representation (XDR), so
the format is not processor specific. This data (3 floats = 12 bytes) is sent across the socket every 30 ms, giving a data rate of
400 bytes/sec.  This low bandwidth is usually handled easily, even on a slow network connection.

4.3 External authoring interface (EAI)

Once the data has been gathered from the controller by the Java applet, the applet must communicate with the VRML CMM
to animate it.  For communication between a VRML world and an external environment (the applet), an interface between the
two is needed. A  proposed interface, called the External Authoring Interface (EAI),7.  defines the set of functions on the
VRML plug-in  that the external environment can perform to affect the VRML world. In essence, the EAI provides a method
for developing custom applications that interact with, and dynamically update a VRML scene.  The EAI allows an external
program (the applet) to access nodes in a VRML scene using the existing VRML event model. The EAI Specification has
been submitted to the VRML Review Board (VRB)8. for ISO  formalization.  Cosmoplayer 2.1 and Blaxxun Contact are two
VRML plug-ins that incorporate the EAI.

Nodes in VRML can be named using the DEF construct. Any node named with the DEF construct can be accessed by the
applet and is referred to as an accessible node. Once a pointer is obtained, the events (eventIns and eventOuts) of that node
can be accessed.  A Java applet communicates with a VRML world by first obtaining an instance of the Browser class. This
class is the Java encapsulation of the VRML world. It contains the entire Browser Script Interface, as well as the
getNode() method, which returns a Node when given a DEF name string. Only DEF names in the base VRML file are



accessible. Names in Inline files and those created with createVRMLFromString() or createVRMLFromURL() are
not accessible.

Once a Node instance is obtained from the getNode() method of the Browser class, its eventIns and eventOuts can be
accessed. The getEventIn() method of the Node class returns an eventIn when passed a string with the desired eventIn
name. The getEventOut() method of the Node class returns an eventOut when passed a string with the desired eventOut
name. ExposedFields can also be accessed, either by giving a string for the exposedField itself (such as rotation) or by giving
the name of the corresponding eventIn or eventOut (set_rotation() for the eventIn and rotation_changed() for
the eventOut).  A VRML joint class was developed to access and manipulate the VRML joints (each a separate DEFed
Node).

4.4 Dynamic update of VRML part position and orientation

Before a part can be inspected, the vision system must determine the part’s position and orientation, and then calculate the
coordinate transformation between the part coordinate system and the machine coordinate system.  After the part position and
orientation is obtained from the vision system, they are updated in the VRML model via the EAI of the VRML plug-in to
represent the part’s real world position and orientation.

5. CONCLUSIONS

Virtual objects in a web-based environment can be interfaced to and controlled by external real world controllers.  This
allows animation of actual processes for collaborative verification.  A VRML environment was created that models an
inspection cell.  The VRML inspection cell contains a model of a CMM and inspection part.  The VRML CMM is interfaced
to, and is controlled by, the real world controller.  This is accomplished by a socket connection between the client’s web
browser and the real world controller.  The current joint angles of the CMM, which are stored in a world model buffer in the
controller, are collected by a Java applet running on the web page.  The applet then updates the VRML model of the CMM
via the EAI of the VRML plug-in.  The part position and orientation is obtained from the vision system and the part is
updated in the VRML model to represent the part’s real world position and orientation.  The web page also contains a client-
controlled pan/tilt/zoom camera that sends video to the client allowing them to monitor a remote inspection with a PC and an
Internet connection.
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